gc#
- class fkat.pytorch.callbacks.gc.ManualGc(schedule: Optional[Schedule] = None, stats: Optional[dict[str, list[str]]] = None)[source]#
-
- maybe_gc(trainer: Trainer, stage: str, batch_idx: int) None[source]#
Perform garbage collection if conditions are met.
- Parameters:
batch_idx (int) – Current batch index
- on_predict_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0) None[source]#
Perform GC after prediction batch if needed.
- on_predict_epoch_end(trainer: Trainer, pl_module: LightningModule) None[source]#
Perform GC after predict epoch.
- on_test_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Optional[Union[Tensor, Mapping[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int = 0) None[source]#
Perform GC after test batch if needed.
- on_test_epoch_end(trainer: Trainer, pl_module: LightningModule) None[source]#
Perform GC after test epoch.
- on_train_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Optional[Union[Tensor, Mapping[str, Any]]], batch: Any, batch_idx: int) None[source]#
Perform GC after training batch if needed.
- on_train_epoch_end(trainer: Trainer, pl_module: LightningModule) None[source]#
Perform GC after training epoch.
- on_validation_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Optional[Union[Tensor, Mapping[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int = 0) None[source]#
Perform GC after validation batch if needed.