loggers#
- class fkat.pytorch.callbacks.loggers.CallbackLogger(trainer: lightning.pytorch.trainer.trainer.Trainer | None, loggers: Optional[list[fkat.pytorch.loggers.LightningLogger]] = None)[source]
A wrapper on top of the collection of Logger instances, providing methods to log metrics, artifacts, and tags across all registered loggers simultaneously.
- loggers
List of loggers
- Type:
list[LightningLogger]
- Parameters:
trainer (L.Trainer) – PyTorch Lightning trainer instance used to initialize loggers
- log_artifact(local_path: str, artifact_path: Optional[str] = None) None[source]
Log a local file as an artifact.
- Parameters:
local_path (str) – Path to the file on the local filesystem to be logged
artifact_path (str, optional) – Remote path where the artifact should be stored If None, a default location should be used
- log_batch(metrics: Optional[dict[str, float]] = None, params: Optional[dict[str, Any]] = None, tags: Optional[dict[str, str]] = None, timestamp: Optional[int] = None, step: Optional[int] = None) None[source]
Log multiple metrics and/or tags in a single batch operation.
- Parameters:
metrics (dict[str, float], optional) – Dictionary mapping metric names to their float values
params (dict[str, Any], optional) – Dictionary mapping params names to their values
tags (dict[str, str], optional) – Dictionary mapping tag names to their string values
timestamp (int, optional) – Unix timestamp for when the batch was logged
step (int, optional) – Training step or iteration number
- log_tag(key: str, value: str) None[source]
Log a single key-value tag.
- Parameters:
key (str) – The identifier/name of the tag
value (str) – The value associated with the tag
- loggers: list[fkat.pytorch.loggers.LightningLogger]
- tags() dict[str, Any][source]
Get current tags
- class fkat.pytorch.callbacks.loggers.MLFlowCallbackLogger(trainer: Optional[Trainer] = None, client: Optional[MlflowClient] = None, synchronous: Optional[bool] = None, run_id: Optional[str] = None)[source]
Mlflow logger class that supports distributed logging of tags, metrics and artifacts.
- Parameters:
trainer (L.Trainer) – PTL trainer object
- log_artifact(local_path: str, artifact_path: Optional[str] = None) None[source]
- log_batch(metrics: Optional[dict[str, float]] = None, params: Optional[dict[str, Any]] = None, tags: Optional[dict[str, str]] = None, timestamp: Optional[int] = None, step: Optional[int] = None) None[source]
- log_tag(key: str, value: str) None[source]
- tags() dict[str, Any][source]